
Submitted to the Journal of Chemical Physics 

LBL-11911 
Preprint 

CIRCULAR INTENSITY DIFFERENTIAL SCATTERING OF LIGHT 
BY HELICAL STRUCTURES. III. A GENERAL POLARIZABILITY 
TENSOR AND ANOMALOUS SCATTERING. 

Carlos Bustamante, Marcos }'. Maestre, and 
Ignacio Tinoco, Jr. 

November 1980 

TWO-WEEK L NCOP 
This is a Circulating Copy 

which be borrowed for two weeks. 
For a personal copy, call 

Info. Division, 

'"~N-0hi tl 

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain conect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wananty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBL-11911 

Circular Intensity Differential Scattering of Light by Helical Structureso 

IIIo A General Polarizability Tensor and Anomalous Scattering. 

Car1os Bustamante,a Marcos F. Maestreb and Ignacio Tinoco. Jroa 

aDepartment of Chemistry and Laboratory of Chei.i~:al Biodynamics 

bDonner laboratory, Division of Medical Physics 

University of California, Lawrence Berkeley Laboratory, 

Berkeley, California 94720 

This manuscript was printed from originals provided by the authoro 





Abstract 

NumericaT calculations of the circular intensity differential 

scattering of light by oriented helical structures made of units with 

general polarizability tensors are presented. The effects on the 

scattering patterns of both absorptive and dispersive properties of 

the units are illustrated. The differential scattering and the total 

scattering both show anomalous scattering phenomena; the differential 

scattering pattern is asymmetric when the wavelength of incident light 

is within an absorption band. Equations for bi-axial polarizabilities 

are used to derive the symmetry properties of the differential scatter

ing pattern and to show how this symmetry can be used to determine 

the right- or left-handed sense of the helical structure. The wave

length dependence of the scattering pattern is obtained for a Lorentzian 

polarizability. 
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Introduction 

The first two papers in this series1' 2 dealt with theoretical 

and computational studies of the differential scattering of right 

and left circularly polarized light by helices. The helices 

were assumed to have a uniaxial polarizability tangent to the helix; 

as a result, the model presented two main features: (1) the values 

of circular intensity differential scattering (CIDS) were independent 

of the magnitude of the polarizability, in particular of its wave

length dependence. The model, therefore, did not include any absorp

tive phenomena. (2) All differential scattering patterns were symmetric 

around the direction of incidence of the light. 2 

In this paper we will explicitly analyze the case of a biaxial 

polarizability and we will also show numerical computations for a 

general polarizability tensor containing three principal components. 

Since the model now will give results dependent on the actual form 

and dispersion properties of the polarizability, we must explicitly 

consider the wavelength dependence of the polarizability, 

Numerical Calculations 

Circular intensity differential scattering (CIDS) is the pre

ferential scattering of light of circular polarization by chiral 

structures. CIDS is defined as the ratio of the difference of scat-

tered intensities for incident left and right circularly polarized 

light to its sum. CIDS = (IL-IR)/(IL+IR)' where IL and IR are the 

scattered intensities for the two circular polarizations of the in

cident radiation. 
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In paper I of this series~ the equations for CIDS of helical 

structure were derived; we use equations 19~ 20, A3 and A4 of that 

paper in the calculations reported here. 

We assume that the polarizable electrons in the scatterer are 

harmonically bound, so that their response to an external field is 

d . 1 3 expresse s1mp y as: 

f (l) 

where f is the strength of the absorption band centered at wavelength 

AO and 6A is equal to its width at half height. In the numerical 

computations we have used polarizability tensors with two or three 

principal values along principal axes oriented tangent to the helix, 

t, normal to the helix, n, and perpendicular to these axes, p. 1 

Total and differential scattering patterns were calculated as a 

function of the pitch and radius of the helix, the wavelength of in

cident light, and for various strengths (f), widths (6A), and positions 

(A0) of the absorption bands along the axes defined. Figure 1 shows 

the results of the total and differential scattering for the case of 

a triaxial polarizable helix of pitch= 3.6 and radius= 1.1; the 

1 th A 1 0 d t f b d A - l 0 ' = wave eng = . , an cen ers o an s are Ot - . , AOn 2.0. 

AOp = 1 .5. with strengths, f, all = 1 and widths, 6A = 0.15. Figure 

lb shows the total scattering and the eros for a helix of the same 

dimensions, but with uniaxial (tangential) polarizability. In both 

cases. + 1 , 0 and -1 layer lines are shown. The main feature 

of the general polarizability results is that the differential 

scattering patterns are now asymmetric when the wavelength of the 
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incident radiation is within an absorption band of the polarizability. 

This contrasts with the uniaxial model where the 270°-90°-axis (see 

Fig. 1) is a c2-axis for each of the layer lines. 2 For a general 

polarizability. only the zero layer line has this property. The 

asymmetry is seen both in the CIDS and in the total scattering; it 

is called anomalous scattering in X-ray diffraction. One sees in 

Figure la that the +1 and -1 layer lines are the mirror images of each 

other. A second feature of these general polarizability calculations 

is that the lobes of differential scattering have decreased in number 

(compared to the ones appearing in the uniaxial patterns) as well as 

having become sharper and restricted to smaller domains of the scatter

ingangle ~. Apparently, each polarizability produces its independent 

pattern; the superposition of these patterns produces sharper and more 

localized lobes. 

We found that the use of purely real or purely imaginary polari 

zabilities had the effect of producing total and differential scatter

ing patterns symmetric about the 270°-90° axis. This is shown in 

Figure 2 for a helix of the same dimensions as those used in Figure 

and with the polarizabilities at= Re at• ap =Reap and an= Re an. 

It should be pointed out that the number of lobes for the zeroth

layer line in Fig. 2 is the same as in the corresponding layer line 

in g. la. but here, three negative lobes are too small to be seen 

in the figure. As discussed in paper II of this series, the number of 

lobes of the eros pattern is determined by the geometry of the scatterer 

and not by the values and directions of the transitions in the scatterer. 

In order to gain a better understanding of the symmetry laws involved in 

the patterns of total and differential scattering, the theory of eros for 

helical molecules is explicitly applied to the case of a biaxial polarizabil ity. 
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It will be shown that by writing the polarizabilities in the form a= 

Rexp(iy), a ph~se change is introduced in the angular dependence 

of the scattering intensity, which is equal to the difference in 

the complex phases between the polarizabilities involved; this phase 

change is responsible for the antisymmetric properties observed. 

A detailed analysis of the symmetry of the scattering patterns will 

show their relations to the dispersive and absorptive properties of 

the polarizabilities. 

A Biaxial Polarizabilit,y 

We choose a biaxial polarizability with principal axes along 

nand t. We can define the scattering matrix for the helix as: 

9:rr 
S = F ( l =kk) f (2) 

-JI,n 

A 

~tJhere ~ = ~/lkl is a unit vector along the direction of scattering, 

F includes constants and distance dependent factors, 9, is the number 

of turns of the helix, at and an are the magnitudes of the principal 

polarizabilities, and r is the vector position of the segments in 

the scatterer. 

The electric field of the scattered light for right circularly polarized 

light and left circularly polarized incident light with polarization 

vector defined by (~ 3 + ;~ 1 ) and (~3 - i:1 ), respectively, and incident 

wave-vector ~O along ~2 (y-axis) is: 
( 3) 
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The plus sign gives the scattered field for right circularly polarized 

light and the·minus sign for left circularly polarized light~ with 

6~ = ~- ~o· For a helix oriented along ~ 3 (~·~3 = O)~ we can write the 

terms that must be added to the ones calculated with the purely 

tangential polarizability1to obtain Il -IR. These additional terms are: 

( 4) 

where Im means the imaginary part of the expression should be used, 

and where the limits of integration have been omitted for simplicity. 

To perform the integrations indicated in (4), we rewrite the polari-
iyt iyn 

zabilities at and an as at= Rte and an= Rne where Rt• Rn~ Yt 

and Yn are real numbers. In this way~ after integration. we obtain 

the correction terms for Il-IR that can be found in the appendix 

at the end of the paper. Here we will only show one of the terms 

obtained. to allow the analysis of the symmetries involved: 

(5-1 ) (5-2) 
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where the arguments of the Bessel functions, which are (Qa), the angle 

~~ and constant M have the same definition as in paper I, and k
2 

and kx 

are the ~3 and ~l components of the scattered wave-vector. respectively. 

S~etry Analysis 

In all the correction terms. the use of a mu1tiaxia1 polarizability 

has the effect of introducing phase changes (yt-yn) in the trigonometric 

functions of the scattering angle~ and related angles~~, These phase 

shifts are related to the scattering patterns which show differential 

and total scattering intensities in more restricted and smaller domains 

of the scattering angle~ as discussed above. It is therefore clear 

that the new symmetry properties must be contained in the cross terms 

of t and n (equations in Appendix). and consequently, our analysis does 
~ ~ 

not have to consider the contribution to the scattering intensities of 

the purely tangential solution given in paper I. Figure 3 shows a 

diagrammatic description of the symmetries involved in the differential 

and total anomalous scattering. The lines drawn from the scatterer to 

the plane A represent actual directions of the wave vector of the 

scattered light. Any point in the plane. therefore, where nonvanish-

ing differential or total scattering is observed, can be described com

pletely by the coordinates (kx,k
2

). its sign of polarization (in the 

case of the differential scattering), and the observed intensity at 

that point. One sees that the point 0 represents an inversion point 

for the pattern in plane A, the differential or total scattered inten

sities of the point (kx,k
2

) being the same as that of (-kx.-k
2

), and 

that of (-kx,kz) being the same as that of (kx·-kz). Through our symmetry 

analysis of the differential scattering. we should be able to show the exis-
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tence of the following properties: (a) when the polarizabilities 

are purely real or imaginary, the patterns must be invariant for a 

change of kx ~ -kx and will also be invariant for a change k
2 
~ -k

2
. 

(b) When the polarizabilities are complex, the equations should be 

invariant only for a simultaneous transformation of kx + -kx and 

k
2 

+ -k
2

. (c) The zeroth-layer line is completely symmetric to 

independent changes of kx ~ -kx and to changes of k
2 

+ -k
2 

regardless 

of the use of complex polarizabilities. (d) The total scattering 

shows the same asymmetric behavior as the differential scattering. 

Equation (5) can be rewritten as: 
(6) 

k k 
X2Z2 P2{(J 2 J - J J +2) sin2~'cos6 + (J 2 J + Jn J + 2 )cos2~ 1 sin6} 

4TI M n- n n n n- n n 

( 6-1) (6-2) 

with 6 = y t -y n. 

Equation (6) has the general form: 

where C stands for coefficient, P for phase (sin 2~' or cos 2~' in 

this case) and B for the combination of Bessel functions. Some of 

the terms are affected by changes of the x-coordinate and some by 

changes in the z-coordinate. It can be shown that the above term, 

under the double reflection (x ~ -x; z ~ -z) transforms as: 
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c1xclzPlBlcoso + c2xc22P2B2sin6 

(~)[~J(~)[~J (D[~JGX!J (7) 

where the terms affected by changes of k
2 

+ -kz are shown in square 

brackets and the ones affected by changes of kx + -kx are in paren

thesis, From expressions (7) and (6) we see that term (6-1) is symmetric 

with respect to changes of kx + -kx as well as to changes of k
2 

+ -k
2

, 

whereas (6-2) is antisymmetric with respect to either two of these 

transformations, This different behavior of the two terms is respon-

sible for the asymmetry observed in the differential patterns. When 

the polarizabilities are purely real, then cS = o. and the asymmetric 

term vanishes, leaving only the terms 6-1 invariant to changes kx + 

-kx as well as to changes in kz + -kz. Similarly, when purely ima

ginary polarizabil ities are used, this means that Yt = (2nt + 1 h/2 

and Yn = (2nn + l hr/2 for "t• "n = 0, 1, 2, ...• therefore the 

difference cS:: yt-Yn = 2(nt-nn)n/2 and sineS:::: 0, leavingagain in this 

case only the symmetric terms, When the polarizabilities involved 

are complex, it is clear from (6) that the term will still be symmetric 

for the simultaneous transformation (kx + -kx; kz + -k
2

}. Finally, 

in the zeroth-layer line. even though the polarizabilities might be 

complex, this term vanishes, either because k
2 

= 0 in the zeroth 

layer line, or because the Bessel term B evaluated at n = 0 vanishes. 

Expression (6) contains. therefore (as does each one of the remaining 

terms of the correction of IL-IR; see equations in the Appendix), all 

the antisymmetric properties depicted by the differential scattering 

pattern. Essentially, the same findings are applicable to the symmetry 
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properties of the total scattering (see Figure 1). The correction 

terms for the'total (IL+IR) scattering can be obtained from expression 

(3). Squaring the amplitudes of opposite circular polarization and 

adding them. after some algebra. we obtain a formal expression for 

the correction term as: 

where n' and n indicate the normal axes of the polarizabilities; they 
~ -

are functions of th~ variables e' and e • respectively. 

Equation (8) shows that the total scattering involves a cross

term of the values of the polarizability along the two axes t and n, 

and includes the phase difference o = (yt-yn); this accounts for 

the anti symmetry shown by the total scatted ng patterns. Clearly. 

if the polarizability is spherically symmetric, then the phase changes 

(yt-yn)' {yt-yp)• etc .• will all vanish and the patterns will regain 

their symmetry. This behavior is indeed shown in Figure (4). where 

all three principal values of the polarizability are identical. The 

total scattering patterns appear symmetric, while the differential 

scattering patterns vanish as expected. 1 All the results derived 

so far are completely general and do not depend on the particular form 

chosen for the polarizability. In the next section, an analysis of 

the wavelength dependence of the differential scattering intensities 

will be done for the Lorentzian polarizability of equation (l), 

Although the details of the expansions are only valid for this par-
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ticular case, most of the conclusion will be valid for a Gaussian 

shaped band as well. 

The Dispersion Dependence of the Scattering Intensities 

We have shown above that the use of complex polarizabilities, 

i.e., allowing for the scatterer to possess absorptive as well as 

refractive properties, has the effect of producing scattering patterns 

which are quite asymmetric. The axis defined by the direction of 

incidence of light in the zeroth-layer line is a c2-axis for all the 

layer lines of scattered intensities in space (i.e., for the overall 

scattering pattern);but aside from the zeroth layer line, the remain 

ing layer lines have lost their biaxial symmetry in the direction 

270°-90° (see figures). In all the computations we have presented, 

the simple, harmonically bound electron model has been used for the 

dispersion properties of the polarizability, Here~ starting from 

expression (l), we will derive the wavelength dependence of the scatter

ing intensities for this Lorentzian-shaped polarizatility. Expression 

(1) can be rewritten as: 

(\' 2 
~A J 

(9) 

From this expression we see that in resonance, AO = :\, and the 

polarizability becomes purely imaginary. In view of the results 

presented above, for wavelengths of light corresponding to the center 
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of the absorption band, completely symmetric scattering patterns must 

be observed for IL-IR as well as for IL+IR' if the polarizability 

has a single absorption band common to all axes. Away from the ab

sorption band the anomalous behavior of the scattering disappears. 

We must show, therefore, that the phase difference 6 = yt-yn, res

ponsible for the antisymmetry of the patterns, vanishes at wavelengths 

far outside the absorption bands. To demonstrate this we compare the 

polarizability a= R(cosy + i siny) with Eq. (9) to obtain an expression 

for the phase angle y. 

tan y = ~ -~A << 1 (away from absorption band) 

This is the result we were seeking and it shows indeed that far a~r;ay 

from the absorption band the antisymmetric terms (proportional to sin o) 

vanish, and symmetric patterns of scattering result. Figures (5a) and 

(5b) show in fact that this is the case (see details in Figure Caption); 

By using essentially the same approximations9 from Eq, (9) it can be 

shown that away from resonance: 

Rea= f[l + c~0/(A 2 -A~)J and 

Im a= 
CAD 

(Re a) with CAQ 
6A 

( 11) 
nop2_~_~) ~ ).0 
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From this last expression we see that in a first approximation, away 

from resonance·~ the contribution of the imaginary part of the polariz

abi1ity to the scattered fields is A-4 times smaller than that of the 

real part and therefore the imaginary part will not contribute sig

nificantly to the scattering intensities,for regions of the spectrum 

outside of the absorption band. 

Discussion 

The asymmetry observed in the scattering patterns is the result 

of having chosen for the scatterer a general polarizability. As 

discussed in paper I of this series, this choice implies that in 

calculating the CIDS, the dispersiondependence of the polarizability 

cannot be cancelled when the ratio of IL-IR to IL+IR is taken. The 

effect is to make the calculated differential scattering intensities, 

as well as the total scattering, dependent on the absorptive properties 

of the scatterer. This behavior is a manifestation of 11 anomalous 

scattering 11 described in crystallography. 4 Thus. Friedel's 1aw of 

symmetry of the scattered intensities above and below the equator of 

thediffractionpattern is violated when the wavelength of the incident 

radiation falls inside the absorption band of some of the scattering 

elements in the lattice. As the wavelength of light moves away from 

the absorption band, the asymmetry gradually disappears to eventually 

recover the symmetry of the pattern far away from resonance. However, 

the antisymmetry shown by the absorptive helix is a property peculiar 

to the geometry and symmetry of the scatterer studied. In this way, 

whereas the asymmetry of the scattering patterns is a general manifes

tation of anomalous scattering, the antisymmetry shovm by the patterns 

is peculiar to the highly symmetric chiral scatterer discussed. 
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It is \'/ell known that the phenomenon of anomalous scattering is 

used in crysta-llography as a method to determine the absolute con

figuration of the scatterers and to recover the phases of the scattered 

fields. 5 In Figure 6 the CIDS of a left-handed helix for layer lines 

+1, 0 and -1 is depicted. It should be compared with the correspond

ing layer lines in Figure 1. It is seen that the total scattering has 

a reflection plane defined by the direction of the incident light, and 

perpendicular to the plane of the figure. The CIDS~ on the other hand, 

gets reflected through this plane as well as changes sign when a 

transformation from a right to a left-handed helix is done. This 

effect is important, since it can immediately be used to determine the 

sense of the helix. Shown in Figure 7 is the effect on the scattering 

of light incident perpendicular to the helix axis and plane polarized 

along the axis of the helix (IPOLZ) and perpendicular to it (IPOLX). 

Again here the scattered intensities are asymmetric and different for 

the two different polarizations. For a left-handed helix the patterns 

invert as expected. 

Anomalous scattering is a phenomenon known to be independent of 

the state of polarization of the incident radiation, and therefore 

independent of the symmetry properties of the polarizability. On the 

other hand, we have shown that the assumption of spherically symmetric 

polarizabilities in our case eliminates all the anomalous behavior of 

the scatterer. The reason for this apparent conflict is that anomalous 

scattering is independent of the symmetry properties of the polarizability 

2.I!ll v1hen some, but not all, of the scattering elements of the unit cell 

are anomalous scatterers. If all of them are anomalous scatterers, 

then the violations of Friedel 1
S Lav1 will take place only if the polar-
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izability of the scatterers is nonspherically symmetric. 6 This last 

case corresponds to our choice for the helix. It must be pointed out 

that the model of absorptive scattering that has been described above 

must still be described as FORM-CIDS. since no asymmetrically coupled 

radiation elements have been included in the model. 

Qualitatively. the asymmetry observed in the scattering patterns 

is the result of a breakdown in the symmetry of the form contribution 

to the scattering. By allowing absorption bands to be present along 

the optical axes of the polarizability. the helix scatters with a 

different efficiency, according to the position of the point in the 

scatterer excited by the front wave of the incident radiation. The 

symmetry observed in the nonabsorptive case corresponds to equal scat

tering efficiency of the points on the scatterer. 2 The dispersive 

equations derived for the CIDS in this paper should give information 

about the handedness of the helical (chiral) structure as well as 

about the symmetry properties of the polarizability. 
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Appendix 

The integration of equation (4) allows us to calculate the 

contributions of the cross-terms involving both the tangential and 

normal axes of the polarizability, to the differential scattering. 

The terms which only contain t have been presented before, 1 whereas 

in taking the difference the terms in n cancel. The correction terms 

for IL-IR for a biaxial polarizability along t and n axes are therefore 
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The argument of the Bessel functions is Qa. (See text for the defi

nition of this variable.) 
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Figure Captions 

Figure 1a: Polar plots of intensity vs. scattering angle~ showing the 

+1, 0 and -1 layer lines (LYR) of the CIDS and total scattered 

intensities (SCATT Y) for light incider.t along they-axis 

(from right to left along 270° on the 0 layer line). The 

parameters are pitch P = 3.6, radius R = 1 .l, wavelength 

W = 1.0, length l = 20 turns and a triaxial polarizability 

band AOp = 1.5 and a normal band AOn = 2.0. The strengths 

of the bands are all 1.0 and their half height width chosen 

equal to 0.15. Heavy and light lines indicate negative 

and positive values of CIDS, respectively. 

Figure lb: The corresponding polar plots of the same helix as in Figure 

la but having a uniaxial polarizability along the tangential 

direction with Aot = 1.0. band strength= 1.0 and width= 

0.15 as before. Notice that both the CIDS and the total 

scattering away from the zero-layer line have regained their 

symmetry across the 270°-90° axis. As in Figure la, the 

negative values are depicted with heavier lines. 

Figure 2: Polar plots for the same helix as in Fig. la, with a triaxial 

polarizability, but with at= Re at• ap =Reap and an= 

Re an. Everything else in the calculation was the same as in 

Fig. la. The CIDS and the total scattering are completely 

symmetric across the 270°-90° axis" 
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Figure 3: Graphic depiction of the anti-symmetry involved in the 

anomalous scattering of plane or circularly polarized light 

a chiral structure. The plane A can be a photographic 

plate, for example. The point 0 labels the direction of 

forward scattering and it represents an inversion point 

for the intensities recorded at the plate. 

Figure 4: Polar plots for the total scattering for a helix with the 

Figure 

same structural parameters as those of Fig. la, but possess-

ing a spherically symmetric polarizability with AOt ~ AOp 

"' J..On = 0.85, band strengths "' 1.0 and band widths = 0.15. 

The CIDS patterns are all zero. The total scattering 

appears symmetric as expected (see text). 

Plots of CIDS and total scattering for the +1, 0 and -1 

layer lines for a helix of P = 12, R = 0.6, L = 20 turns. 

The wavelength of light W = 6.0 coincides with the center 

of the tangential band (AOt) and is close to the perpendicular 

AOp = 6.20 and the normal band AOn = 5.00. The band strengths 

are 1.0 for all three bands and the widths are 0.30. 

Notice that the +1 and the -1 layer lines are asymmetric 

for the CIDS as well as the total scattering. 

Figure 5b: Equivalent plots to those of Fig. Sa for the same ratios of 

pitch/wavelength and radius/wavelength and the same band 

positions. However, the wavelength of light is W = 10.0. 
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i.e., away from any of the absorption bands of the scatterer. 

The widths and strengths of the bands are the same as in 

Fig. 5a. CD/MAX indicate that the CIDS intensities have 

been normalized to l .0 in this case and therefore cannot be 

compared to the CIDS values of Fig. 5a, on a quantitative 

basis, The patterns,as discussed in the text. are all 

symmetric. 

Figure 6: The effect of going from a right- to a left-handed helix 

can be observed by comparing this figure to Figure la. 

A left-handed helix is obtained by using a negative pitch 

(P = -3.6, in this case). Everything else is the same 

as in Figure la. The total intensities get reflected through 

a plane containing the 270°-90° axis and perpendicular to 

the plane of the figure, whereas the CIDS is reflected and 

has changed sign, The zero layer line is the same in both 

the CIDS and the total scattering but the sign of the CIDS 

is changed. 

Figure 7: The figure illustrates the fact that plane polarized light 

can be used to determine the handedness of associated 

scatterer when the wavelength of light falls within an 

absorption band. Only the +l layer line is shown. The 

zero layer line is symmetric and indistinguishable for the 

right and left-handed helices. 
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